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a b s t r a c t 

Systems engineering concerns the complete process for the development of complex sys- 

tems comprising hardware, software, facilities and personnel. Such systems are hybrid, as 

some components are characterized by continuous behavior, whereas the behavior of oth- 

ers is discrete. In this paper we present a concise conceptual model for hybrid systems 

engineering with semantics grounded in a hybrid extension of Event-B. We show that 

structural modeling can be based on well-known concepts of the entity-relationship model 

requiring only some extensions to data types and constraints, while behavioral modeling 

requires a careful separation of synchronous and asynchronous interaction and high-level 

means for the integration of continuous functions. On these grounds we address the sepa- 

ration of concerns for continuous and hybrid components. The article uses a sophisticated 

industrial example of a hemodialysis machine to illustrate the modeling method. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The last decades have seen an increasing ubiquity of software systems that is commonly accompanied by buzzwords

such as “cyber-physical systems”, “internet of things”, “systems of systems”, etc. None of these buzzwords has been precisely

defined and despite a common core there are subtle differences concerning what is emphasized by each of them. However,

they all share the commonality that software systems appear more and more frequently as parts of complex, hybrid

systems, which comprise mechanical, electrical, hydraulic, electronic parts as well as software. Consequently, the integrated

development of such systems is a main challenge for systems development and thus also for conceptual modeling. Systems

Engineering (SE) is supposed to address exactly this challenge. 

The state of the art in SE is dominated by SysML, the OMG Systems Modeling Language (OMG SysML TM ) [36] , and

support tools such as PTC Integrity Modeler [38] , Magic Draw [33] , Enterprise Architect [24] and others. As our analysis of

SysML, its associated tools and other related work—see the separate Section 2 on state of the art and related work—reveals,

SysML is too close to UML and as such inherits known deficiencies such as a lack of formal semantics. In particular,
∗ Corresponding author. 
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the decisive continuous aspects in hybrid systems are treated like wall flowers, even more so in the support tools, and

a necessary distinction between synchronous and asynchronous behavior is missing. This implies the need for a more

rigorous support of hybrid systems engineering, which is the main motivation for our research. 

1.1. Our contribution 

In this article we do not deal with the formalization of SysML. Instead, we define a more generic conceptual model

for SE grounded in well-established methods for structural conceptual modeling and rigorous specification of behavior. In

order to successfully master the inherent complexity of hybrid systems, the structuring into components, the capture of

relationships between these components, and the elicitation of constraints that have to be respected by behavioral models,

is indispensable. This has among others been emphasized already by Bjørner in his monographs on Software Engineering,

where he emphasized domain engineering as a highly important and indispensable aspect of the development process

[15,16] . This aspect is also highlighted in conceptual modeling as well as in the ground modeling approach that is intrinsic

part of the development methodology with Abstract State Machines [19] . 

There are many approaches for the capture of the structural aspects of a domain. In our conceptual model we decided to

adopt the higher-order entity-relationship model (HERM) [48] , which comes with a well established formal semantics based

on sets, a sophisticated theory of structural constraints, subsumption of other methods, in particular UML class diagrams as

employed by SysML, and most importantly a long history of many successful applications of very large size. Furthermore,

in hybrid systems we have to capture continuous sequences of states, which can be equivalently captured by states that

involve continuous functions as values, thus adding continuous functions to the open type system exploited by HERM is a

straightforward, but nonetheless extremely powerful extension that will make the method suitable for structural modeling

of hybrid systems. 

In order to integrate structure and behavior we adopt concepts from extended rigorous methods 1 for hybrid systems

specification. Natural candidates are (hybrid) ASMs [12] , (hybrid) Event-B [9,10,46] or TLA 

+ [31] . In principle each of these

rigorous methods can be used for our purposes, as continuous functions as values can be easily added. We therefore aim

at an approach, where the role of the rigorous method is to serve for the specification of behavior, and differences in

expressiveness allow us to choose the method that is most appropriate for a particular application. This includes the use of

supporting tools such as the RODIN extension in [46] to capture hybrid dynamic systems and to enable rigorous refinement

towards implementation. Therefore, our work in [21] emphasizes the use of concurrent Abstract State Machines, while in this

article we show that Event-B can be used in a similar way. This does not include a statement which one should be preferred

in general, but independent of the choice it is rather straightforward to show how SysML can be captured by our model. 

Concerning the relationship between ASMs and Event-B both are state-based rigorous methods, so the semantics is

expressed by runs, i.e. sequences of states. The exact definition of state is different in both methods, but both can be

mapped onto each other, as the mathematical underpinning is provided by universal algebras. It is well known that

unbounded parallelism is only supported by ASMs and cannot be expressed in Event-B in a behaviorally equivalent way.

However, if we dispense with unbounded parallelism, both sequential ASMs and Event-B can express exactly the same type

of algorithms. Börger and Leuschel showed how to define translations between both rigorous methods [32] . Theoretically,

the result can also be derived from Gurevich’s proof of the sequential ASM thesis [27] . 

With respect to concurrency, however, an extension has been defined for ASMs [18] , but (hybrid) Event-B is de facto

bound to single machines. In this article we dare to use multiple Event-B machines with shared state variables (both

concept that strictly speaking are alien to Event-B), and we adopt the concurrent run semantics from concurrent ASMs for

Event-B with multiple machines 2 . Whether the Event-B community will accept this proposal is open. However, without a

proper theory of asynchronously interacting machines a method will not be suitable for hybrid systems development. On

the other hand, such an extension by multiple Event-B machines or concurrent ASMs gives a precise meaning to the term

“systems of systems”. 

Concerning the structural part of our conceptual model the adoption of HERM allows us to capture part-of relationships,

specialization and generalization, complex attributes and sophisticated constraints. In doing so the model will capture sets

of complex devices, and values associated with attributes will define a state of the system corresponding to instances of

schemata in HERM. However, in order to capture continuous aspects as well, we adopt the view of hybrid dynamic systems

[3,37] , according to which continuous, piecewise differentiable functions can be used as values. The discrete values then

correspond to piecewise constant functions that are continuous using a discrete topology. The presence of continuous

functions as values and the fact that systems components have to be considered as being active further requires to add

flow constraints to the model, which simply means that at any time a value may flow out of some component into another

one without explicit control. This corresponds to the behavior of “pliant” locations in hybrid ASMs [13] . 

Concerning the behavioral part of our conceptual model we directly adopt the behavioral theory of concurrency [18] by

defining agents and rules associated with them. We carry this semantics forward to Event-B with multiple machines.

The events manipulate the “pliant”, i.e. continuous, and “mode”, i.e. discrete locations, and thus require the use of terms

referring to solutions of differential equations, in particular initial value problems. 
1 Note that we emphasize only the specifications, whereas the treatment of refinement is reserved for future work. 
2 These extensions to Event-B are handled in more detail in a forthcoming paper by one of the authors [42] . 
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In this article we continue our research in [20,21] , where we developed a conceptual model for hybrid dynamic systems

based on HERM for structural modeling and constraints, and on concurrent hybrid ASMs and Event-B, respectively, for be-

havioral modeling. In our previous work we illustrated our model on the landing gear case study [17] , and the hemodialysis

machine case study [35] , respectively. The latter case study will be further explored in this article. 

1.2. Outline of the article 

Section 2 provides more details of the state of the art in hybrid systems engineering emphasizing SysML and the use

of rigorous methods. In Section 3 we present our structural conceptual model, which is based on meromorphic part-of-

relationships. We integrate continuous functions as values associated with attributes, which is in strict analogy to the hybrid

extensions to Event-B and ASMs, and show how the structural model gives rise to static components of Event-B machines.

We assume familiarity with the basic concepts of Event-B. Section 4 is dedicated to constraints, i.e. structural dependencies,

flow dependencies and parametric constraints, the latter ones integrating differential equations. We define the different

types of constraints in general, and show how they are captured by invariants in Event-B machines. In Section 5 we

present our approach to behavioral modeling. While flow dependencies imply synchronous behavior, we support general

asynchronous behavior exploiting the behavioral theory of concurrent systems [18] . We formalize the semantics using

multiple Event-B machines with common contexts, and discuss the separation of concerns between continuous and discrete

components. In Section 6 we model parts of the hemodialysis machine case study [35] using the structural and behavioral

concepts of our model. While this illustrates the concepts in principle, the solution to the case study as such will remain

incomplete—more details concerning the structural aspects are described in [43] . We conclude with a brief summary and

outlook in Section 7 . 

In order to see examples for the concepts introduced in Sections 3 –5 , we recommend to read Section 6 in parallel to

the development of our model and to map the specifications in the case study to the formal definitions of our model. In

order to support this parallel reading we make extensive use of cross referencing between our definitions in Sections 3 –5

and illustrating examples in Section 6 . 

2. Related work 

The state of the art in SE is dominated by SysML, the OMG Systems Modeling Language (OMG SysML TM ) [36] , and support

tools such as PTC Integrity Modeler [38] , Magic Draw [33] , Enterprise Architect [24] and others. SysML provides graphical

notations for SE on a high level of abstraction. It has been adapted from the commonly known Universal Modeling Language

(UML), thus provides several types of diagrams to capture systems requirements. There are three classes of diagrams: 

• structure diagrams, which capture 
• package diagrams as in UML, 
• block definition diagrams adapted from UML class diagrams to capture system components, their attributes and op-

erations, and relationships between components, 
• internal block diagrams capturing further dependencies, in particular flow dependencies, between components and

their attributes, 
• parametric diagrams, which define detailed constraints among components and their attributes; 

• requirement diagrams, which capture general requirements the system specification has to meet; 
• behavioral diagrams, which adapt activity diagrams, sequence diagrams, state machine diagrams, and use case diagrams

from UML with slight changes to the corresponding activity diagrams in UML. 

Roughly speaking, a SysML specification consists of a collection of such diagrams. Neglecting those aspects that refer

to relevant information gathered throughout the development process such as comments, viewpoints, rationals underlying

design decisions, the underlying conceptual model comprises structural and behavioral concepts. The former ones comprise

components and their relationships, which also capture flow information and governing constraints. For the high-level

specification of hybrid systems SysML supports the capture of time dependencies by means of continuous, piecewise

differentiable functions, though this is handled rather implicitly. The latter ones comprise the state changes resulting from

the execution of activities. 

As SysML is derived from UML, it inherits its disadvantages [41] , mainly the lack of semantics, in particular operational

semantics, and the lack of precise indication of the purpose of the various diagrams and how they should be used; SysML

provides hardly more than drawing support. Users are left alone with an interpretation and usage of the various diagrams.

In particular, with respect to constraints that are decisive for hybrid systems, SysML remains rather vague. A differentiation

between synchronous and asynchronous behavior is not available in SysML. 

Concerning the supporting tools such as PTC Integrity Modeler [38] , Magic Draw [33] , Enterprise Architect [24] the

situation is even worse. In particular, the latter two shift the emphasis even more towards classical UML modeling, so

the applicability for hybrid systems becomes even more obscure. As support for object-oriented programming these tools

support a somehow cleansed version of UML, but for hybrid systems engineering they are rather weak. 

Concerning formal semantics translations of behavioral diagrams to Abstract State Machines (ASMs) [19] have been de-

veloped in [39,44] , but these can be merely understood as formalizations of the corresponding UML diagrams, in particular
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sequence, activity and statechart diagrams with almost no consideration of the true extensions concerning the integrated

continuous parts. 

What is required is a more rigorous support for hybrid systems development, which leads directly to methods such as

Abstract State Machines, Event-B, TLA 

+ and others. All these methods have already been used on various occasions for

problems associated with hybrid systems. A reasonably good survey of experiences with rigorous methods can be derived

from two larger case studies, one addressing the hemodialysis case study [35] , which we also address in this article, the

other one dealing with the landing gear case study [17] , which we also addressed in previous work [21] . 

Concerning the hemodialysis machine case study Hoang et al. investigate the effectivity of the verification and validation

techniques associated with Event-B and the supporting tools based on a formal specification of the safety-critical software

in Event-B and an analysis using the RODIN Toolset [28,29] . The HD machine is modeled using iUML-B state machines and

class diagrams, and visualized by BMotion Studio, while ProR is used for structuring and tracking requirements. Validation

of the model exploits diagrams for modeling sequential properties of the requirements, and ProB-based animation and

visualization tools to explore the systems behavior. For the particularly difficult verification of safety properties that involve

dynamic behavior co-simulation tools are used to validate against a continuous model of the physical behavior. Arcaini

et al. investigate the rigorous development process based on the Abstract State Machine for the hemodialysis machine

case study focusing in particular on compliance with standards such as IEC 62304 and general principals of software

validation required for safety-critical medical software systems [4,5] . They discuss how to integrate the use of the formal

ASM approach emphasizing its refinement principle and model analysis into the current normative for the medical software

development. Further contributions were made by Banach [7] , Fayolle et al. [25] and Gomes et al. [26] . With the exception

of Banach’s work, which is based on hybrid Event-B, the major emphasis of all contributions is on the various safety alerts,

whereas continuous aspects play a minor role. 

Concerning the landing gear case study Su and Abrial propose three Event-B models using different techniques for

verification and validation [45] . Another Event-B model by Mammar and Laleau pays particular attention to incremental

construction of the model first neglecting time aspects and potential adding these step by step [34] . Ladenberger et al.

exploit the B method with particular emphasis on tool-supported visualization [30] . The approach by Arcaini et al. exploits

Abstract State Machines emphasizing a refinement-based development, where the correctness of each refinement step is

proven by an SMT solver, and code generation in Java [6] . Teodorov et al. address the problem of state space explosion

using a context-aware verification approach [47] . All this work merely emphasizes the control and alert aspects in the

landing gear case study, whereas the behavior of non-discrete components is not tackled. Though the continuous parts

of this case study are not overly complicated—the constraints mainly cover standard relationships between pressure and

volume in closed systems such as hydraulic cylinders—Banach makes an attempt to hybrid modeling using hybrid Event-B,

though without looking into the resulting verification problems [8] . 

There are various other case studies on the specification of hybrid systems using formal methods, none of which

classifies as complex as the two case studies analysed in more detail. We conclude that while there is a strong need for

rigorous support that is not given by methods such as SysML the common rigorous methods still require extensions to

become valuable alternatives. This justifies our research in this article as well as in [21] , where we provide an enhanced

SysML-like approach to structuring and decomposition of hybrid systems preserving the valuable contribution coming from

this side, and couple this with a rigorous method, by means of which we enable the accurate specification of asynchronous

behavior, the capture of continuous constraints, and the extension of validation and verification approaches including

appropriate tool support. Most of this work is still at a rather stage; in particular, hybrid extensions to tools such as RODIN

or ASMeta are under development, while the available theory plug-in for real numbers for RODIN [2] is already exploited

for dealing with differential equations in hybrid systems [22,23] . We consider it essential that our approach is not bound

to a particular method. While we emphasized ASMs in [21] , this article is grounded in Event-B. As far as replaceability

of one rigorous method by an other one can be carried we like to keep this duality—even extend it to TLA 

+ and B—and

enable choices, unless expressiveness argues in favour of one particular method—for instance, if unbounded parallelism or

recursion is to be supported, it is well known that it is only covered by ASMs for the price of complexity. 

3. A structural conceptual model for hybrid systems 

We will now introduce the concepts for the structural part of our conceptual SE model emphasizing hybrid extensions

and dependencies. We will exemplify the model on the hemodialysis machine case study in Section 6 . 

3.1. Data types 

Data types are crucial for the conceptual SE model, as they will be needed for the definition of states. Our model defines

complex attributes, which refer to complex data types. For hybrid systems it is decisive that we can handle continuous and

differentiable functions on the reals. 

Therefore, let b stand for an arbitrary base type such as INT, BOOL, REAL , etc. We do not impose restrictions on these base

types, but we request that BOOL and REAL are always in the given collection of base types. Then 

ˆ b denotes an extension of

the base type b by the value undef , which is necessary for partial functions. For the base types we assume a predefined set
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of operators such as the Boolean operators ¬, ∧ and ∨ (and any shortcut), addition + , multiplication ·, etc. for integers and

reals, etc. 

Definition 3.1. Data types t are defined by the following abstract syntax: 

t = b | (a 1 : t 1 , . . . , a n : t n ) | { t} | 〈 t〉 | [ t] | (a 1 : t 1 ) � · · · � (a n : t n ) | t → t ′ 

As usual (a 1 : t 1 , . . . , a n : t n ) denotes a record type constructor with component types t 1 , . . . , t n with labels a 1 , . . . , a n , { t }

denotes a constructor for finite sets with elements of type t , 〈 t 〉 denotes a constructor for finite multisets with elements

of type t , [ t ] denotes a constructor for finite lists with elements of type t , (a 1 : t 1 ) � · · · � (a n : t n ) denotes a constructor

for disjoint unions of component types t 1 , . . . , t n with labels a 1 , . . . , a n , and t → t ′ denotes a constructor for the type of

continuous functions defined on values of type t and resulting in values of type t ′ . Here we use the usual topology for the

reals and product topologies, whenever this is applicable, as e.g. for the case of record types. In all other cases the topology

is the discrete topology. 

Example 3.1. In Section 6 we define several data types for the hemodialysis machine case study. In particular, follow-

ing (6.2) we define the type P r essur e = REAL → REAL capturing pressure values that depend on time. Similarly we de-

fine V olume = REAL → REAL capturing volume that can be manipulated over time. We further need a type YesNo = ( yes :

1 ) � ( no : 1 ) in all three cases, which actually takes exactly two values. These types are also used after (6.3) . 

For all constructed types we use the usual operators such as projections for records, structural recursion for sets,

multisets and lists, selection for union types, and concatenation, restriction, etc. for function types. Such operators are

defined in detail in [40] . In addition, we require a derivation operator D t = 

∂ 

∂t 
that is defined for (partial) functions with

domain REAL . Naturally, D t ( f ) is also a partial function with domain REAL , and D t ( f )(x ) is the derivative of f at the point

x (sometimes also denoted as f ′ ( x )), provided this exists. Thus, D t is actually a functional. 

Each data type t defines a set of values, which we denote as dom ( t ). This can be exploited to represent defined data

types in an Event-B context, while theories comprising types, operators and axioms are used to define base types such as

Bool or Real . The report [22] contains very detailed definitions of such theories, as they are used in [23] and supported by

the RODIN theory plug-in [2] . The work in [14] further shows how to realize exact real arithmetic. 

For later use we also permit subtyping . 

Definition 3.2. Subtypes are defined as follows: 

• each type is a subtype of itself and of the base type 1 with dom ( 1 ) = { undef } ; 
• each type (a i 1 : t 

′ 
i 1 

, . . . , a i m : t 
′ 
i m 

) , where { i 1 , . . . , i m 

} ⊆ { 1 , . . . , n } and t ′ 
i 

is a subtype of t i ( i ∈ { i 1 , . . . , i m 

} ), is a subtype of

(a 1 : t 1 , . . . , a n : t n ) ; 
• each type { t ′ }, where t ′ is a subtype of t , is a subtype of { t }; 
• each type 〈 t ′ 〉 , where t ′ is a subtype of t , is a subtype of 〈 t 〉 ; 
• each type [ t ′ ], where t ′ is a subtype of t , is a subtype of [ t ]; 
• each type (a 1 : t 

′ 
1 
) � · · · � (a n : t 

′ 
n ) , where t ′ 

i 
is a subtype of t i ( i ∈ { 1 , . . . , n } ), is a subtype of (a 1 : t 1 ) � · · · � (a n : t n ) ; 

• each type t 1 → t ′ 
1 
, where t is a subtype of t 1 and t ′ 

1 
is a subtype of t ′ , is a subtype of t → t ′ . 

Whenever t ′ is a subtype of t we obtain a canonical subtype function π : dom ( t ) → dom ( t ′ ). Such subtype functions can be

defined in Event-B contexts. 

3.2. Blocks and structures 

The structural building blocks of our conceptual model are block types and clusters of different order n ≥ 0, which we

derive from HERM. It can well be argued (see e.g. [27] or [19] ) that any mathematical theory is grounded in a first-order

Tarski structure (aka universal algebra), i.e. a set of functions, and functions can be represented by relations and vice versa.

Definition 3.3. A block type B of order n ≥ 0 consists of a set { r 1 : B 1 , . . . , r k : B k } of pairwise different (labelled) components

and a set { A 1 , . . . , A � } of attributes . The labels r i ∈ L are taken from a set L of labels, also called roles . Each component B i is

a block type or a cluster of order n i < n , and for at least one component the order must be exactly n − 1 . Each attribute A i

is associated with a data type type( A i ). 

A cluster C of order n ≥ 0 consists of a labelled set { c 1 : B 1 , . . . , c m 

: B m 

} with pairwise different labels c i ∈ L , where each

component B i is a block type of order n i ≤ n , and for at least one component the order must be exactly n . 

Each block type defines its parts and describing properties. As block types of order 0 do not have components, we call

them elementary . 

The intended semantics is easily explained. A block type gives rise to a relation, and each cluster to a disjoint (labelled)

union of relations. More precisely, if B is a block type as in Definition 3.3 , then a B -tuple is a record (id : i, r 1 : i 1 , . . . , r k :

i k , A 1 : v 1 , . . . , A � : v � ) of arity k + � + 1 ( k is the number of components, � the number of attributes), where i, i 1 , . . . , i k are

identifiers taken from some not further specified set ID of identifiers, and each v is a value of type type( A ). 
i i 
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Example 3.2. In Section 6 we define a schema comprising several block types. For instance, the definition of a block type

HD_Machine in (6.1) comprises four components and no attributes. The definition of the elementary block type Con-

trol_Subsystem in (6.2) comprises nine attributes. The definition of a block type EBC in (6.3) comprises six components

and again no attributes. Further block types are defined in 6.4 and 6.5 and the text following these definitions. 

According to these definitions block type HD_Machine has order 2, block types EBC , Dialyser and DF_Subsystem have

order 1 and all other block types have order 0, i.e. they are elementary. 

Definition 3.4. A schema is a set { B 1 , . . . , B n } of block types and clusters that is closed under components. A structure S
associates a set B of B -tuples with each block type B of the schema, and the labelled disjoint union C = 

⋃ m 

i =1 { (c i , t i ) | t i ∈
B i } with each cluster B . The structure St is well-defined iff all identifiers associated to tuples are pairwise different, and

whenever r j : i j appears in a B -tuple in B, then there exists an B j -tuple in B j with identifier i j . 

We only consider well-defined schemata and structures in this article. According to Definition 3.4 each block type B

gives rise to set values S(B ) . Therefore, in Event-B we can employ variables B and invariants capturing the type of S(B ) .

Furthermore, the well-definedness conditions give rise to further invariant clauses. 

Example 3.3. All definitions of block types in (6.1) –(6.5) and the accompanying text together define a well-defined schema.

If S is a well-defined structure, B is a block type and i ∈ ID is an identifier, then B ( i ) denotes the B -tuple in the structure

with identifier i . Then B ( i ). r j (for j = 1 , . . . , k ) and B ( i ). A j (for j = 1 , . . . , � ), are used to denote the value of the corresponding

component, i.e. B ( i ). r j ∈ ID , or attribute, i.e. B ( i ). A j ∈ type( A i ), respectively. As identifiers are of minor importance (except

for referencing and unique identification), we also use the notation B ( i )! r j (for j = 1 , . . . , k ) for the B j -tuple with identifier

B ( i ). r j . In doing so, we can further use paths ℘ = B 0 , . . . , B n with B 0 = B and let B ( i ). ℘ denote the B n -tuple that is reached

from B ( i ) through this path. 

Pragmatically, in systems engineering we deal with devices that are structured into components, so there is usually a

root block type B r , from which all attributes of all components can be reached by some path. If we fix an identifier i ∈ ID ,

then any attribute in any component can be denoted by some expression B r ( i ). ℘. A j . Instead of this lengthy notation we

permit shortcuts: if the attribute name A j is unique and there is only one path ℘ from B r to it, then we simply use A j ,

otherwise use a shortcut name ℘ ′ for B r ( i ). ℘ and write ℘ ′ _ A j . 

A schema can be easily represented by a diagram, i.e. a labelled graph. If S is a schema, then we define a directed graph

( V, E ), the diagram representing S, as follows: 

• The set V of vertices comprises four types: 
• each block type B of order 0 defines a vertex labelled by B (usually represented by a rectangle); 
• each block type B of order n > 0 defines a vertex labelled by B (usually represented by a diamond); 
• each cluster C defines a vertex labelled by C (usually represented by a circle with � symbol); 
• each attribute A of a block type B defines a vertex labelled by A and optionally also by the associated type type( A ). 

• The set E of directed edges comprises three types: 
• role edges from a block type B to each of its components r : B ′ labelled by the role r ∈ L ; 
• component edges from a cluster C to each of its components c : B labelled by c ∈ L ; 
• attribute edges from a block type B to each of its attributes A . 

Example 3.4. The schema of the hemodialysis machine case study is illustrated by a diagram that is given by the combina-

tion of the subdiagrams in Figs. 6.2 –6.5 . 

For later use the nested character of complex-valued attributes by means of the data types permit the definition of

subattributes. If A is an attribute, then any subtype t ′ of t = type (A ) defines a subattribute A 

′ = π(A ) with type (A 

′ ) = t ′ ,
where π is the canonical subtype function dom ( t ) → dom ( t ′ ). 

For the sake of keeping diagrams reasonably small we permit using subdiagrams . For these omit components or attributes

from types in a schema S or even omit types completely, as long as the well-definedness is still guaranteed. The diagram of

the resulting subschema constitutes a subdiagram. However, even if all components of a block type B were removed in such

a subdiagram construction, the order of B will still be defined by the complete schema. We say that a set of subdiagrams

covers S iff each of the vertices and edges of the diagram of S appears in at least one subdiagram. 

Example 3.5. Each of the Figs. 6.2 –6.5 illustrates a subdiagram of the diagram for the hemodialysis machine case study. 

4. Constraints 

HERM provides a large variety of possible constraints that can be used to restrict the admitted structures. As our

model is based on HERM, we inherit this richness to express constraints, which we call structural dependencies. We will

further extend them by flow dependencies and parametric constraints that are of particular importance for the hybrid

extensions. For the semantics of our conceptual model we have to guarantee that all structures are valid. For examples of

the constraints we refer to Section 6 . 
Definition 4.1. A structure is called valid with respect to a set � of constraints iff it satisfies all constraints in �. 
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4.1. Structural dependencies 

Important classes of static constraints are key and functional dependencies, inclusion and exclusion dependencies,

cardinality constraints and path constraints. 

Definition 4.2. A key for a block type B = ({ r 1 : B 1 , . . . , r k : B k } , { A 1 , . . . , A � } ) is defined by K = ({ r i 1 : B i 1 , . . . , r i m :
B i p } , { A 

′ 
j 1 

, . . . , A 

′ 
j q 
} ) comprising a subset of the set of components and a set of subattributes A 

′ 
j i 

of A j i 
. 

As K gives rise to a canonical projection πK of B -tuples to K -tuples exploiting the canonical subtype functions for

subattributes, a structure S satisfies the key dependency defined by K iff πK (v 1 ) = πK (v 2 ) ⇒ v 1 = v 2 holds for all B -tuples

v 1 , v 2 ∈ S(B ) . 

Definition 4.3. If X and Y are built in the same way as K for a block type B , then the expression X → Y defines a functional

dependency . 

A structure S satisfies a functional dependency X → Y iff πX (v 1 ) = πX (v 2 ) ⇒ πY (v 1 ) = πY (v 2 ) holds for all B -tuples

v 1 , v 2 ∈ S(B ) . 

Definition 4.4. If X 1 and X 2 are built in the same way as K for block types B 1 and B 2 , respectively, and both πX i 
map

B i -tuples to tuples of the same type, then the expression B 1 [ X 1 ] ⊆ B 2 [ X 2 ] defines an inclusion dependency . Analogously, an

expression B 1 [ X 1 ] ‖ B 2 [ X 2 ] defines an exclusion dependency . 

The validity of an inclusion dependency B 1 [ X 1 ] ⊆ B 2 [ X 2 ] in a structure S requires that for each B 1 -tuple v 1 ∈ S(B 1 ) there

exists a B 2 -tuple v 2 ∈ S(B 2 ) with πX 1 
(v 1 ) = πX 2 

(v 2 ) . The validity of an exclusion dependency B 1 [ X 1 ] ‖ B 2 [ X 2 ] in a structure S
requires that for all B i -tuples v i ∈ S(B i ) we have πX 1 

(v 1 ) � = πX 2 
(v 2 ) . 

Definition 4.5. For a block type B with components r i 1 : B i 1 , . . . , r i k : B i k and a subset I ⊆ N the expression card (B, (r i 1 :

B i 1 , . . . , r i k : B i k )) = I defines a participation cardinality constraint . 

Analogously, for r j 1 : B j 1 , . . . , r j � : B j � and I ⊆ N the expression look ((r i 1 : B i 1 , . . . , r i k : B i k ) , (r j 1 : B j 1 , . . . , r j � : B j � )) = I

defines a ( k , � ) look-up cardinality constraint . 

In both cases I is most commonly an interval [ m, M ]. A structure S satisfies a participation cardinality constraint

card (B, (r i 1 : B i 1 , . . . , r i k : B i k )) = I iff for all B i -tuples v i ∈ S(B i ) ( i ∈ { i 1 , . . . , i k } ) with identifiers id i the set of B -tuples

{ v ∈ S(B ) | π{ r i 1 : B i 1 , ... ,r i k : B i k } (v ) = (id i 1 , . . . , id i k ) } has a cardinality in I . 

Analogously, a structure S satisfies a look-up cardinality constraint look ((r i 1 : B i 1 , . . . , r i k : B i k ) , (r j 1 : B j 1 , . . . , r j � : B j � )) = I iff

for for all B i -tuples v i ∈ S(B i ) ( i ∈ { i 1 , . . . , i k } ) with identifiers id i the set { π{ r j 1 : B j 1 , ... ,r j � : B j � } (v ) | v ∈ S(B ) ∧ π{ r i 1 : B i 1 , ... ,r i k : B i k } (v ) =
(id i 1 , . . . , id i k ) } has a cardinality in I . 

Though in Section 6 we do not go into details of “classical” dependencies as defined above, we mention participation car-

dinality constraints following block definitions, e.g. in (6.1) , which arise from the fact that the components are in fact parts.

All kinds of dependencies defined above can be generalized to path dependencies , if the block types used in their

definitions are expanded types B ℘ according to paths ℘. 

Definition 4.6. A path is a sequence ℘ = B 1 , . . . , B k of block types or clusters such that B i +1 appears as a component of B i for

all i = 0 , . . . , k − 1 . 

If we replace a component r i +1 : B i +1 in B i by r i +1 , j : B 
′ 
j 

for all components r ′ 
j 

: B ′ 
j 

of B i +1 and add all attributes of B i +1

to those of B i , we obtain an expanded block type B i,i +1 . Doing this for all components in a path defines an expanded block

type B ℘ . 

With the definition of semantics for the structural dependencies in Definitions 4.2 –4.5 and the extended path constraints

it becomes obvious that all these constraints give rise to further invariant clauses in representing Event-B machines. 

4.2. Flow dependencies and parametric constraints 

With respect to attributes that are bound to types of continuous functions we introduce flow dependencies and parametric

constraints . The former ones indicate that a value from one component may flow into another component. In order to

capture such dependencies in our conceptual model we permit some of the attributes of a block type to be declared as

ports . These can be in- ports, out- ports and in-out- ports. 

Definition 4.7. A flow dependency links an out-port of one block type with an in-port of another one, or two in-out-ports. 

By default, if nothing else is specified, a flow dependency indicates that at any time the value associated with the con-

nected attributes are equal. That is, flow dependencies are technically just specific path dependencies. They are particularly

relevant, if the associated data type, which must be the same for both ports, is R → t . By means of a flow dependency a

synchronization of the values in a structure will be enforced. This will become relevant in the behavioral part of our model.
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Example 4.1. In (6.6) –(6.9) we give several examples of flow dependencies for the hemodialysis machine case study. Some

of these are linked to real flows of liquids, others to connections from sensors to the control component. It will be a matter

of refinement to highlight the type of flow interaction. Note that a flow dependency always implies inclusion dependencies.

The second class of dependencies that are not inherited from HERM are parametric constraints that are used to express

inherent constraints in the physical domain such as dependencies between pressure and volume or requirements concerning

bounds of a continuous functions, etc. Parametric constraints are usually associated with continuous functions, though our

definition permits a more general usage. 

Definition 4.8. A parametric constraint is given by an equation or inequality with n variables x 1 , . . . , x n , each of which is

linked to an attribute in some block type. 

A parametric constraint may involve the derivation functionals D t , by means of which differential equations, in particular

solutions to initial value problems, can be requested as constraints. Same as the flow dependencies a synchronization of

the values in a structure will be enforced. 

Example 4.2. The hemodialysis machine case study in Section 6 contains many parametric constraints, in particular those

defined in (6.10) –(6.14) . Some of these formalize common physical laws, e.g. (6.12) formalizes es the relationship between

pressure and volume in a closed system. Others define conditions the system must satisfy; otherwise an alert will be pro-

duced. 

Parametric constraints can be combined with flow dependencies, which defines parametric flow dependencies. 

Definition 4.9. A parametric flow dependency is a flow dependency together with a parametric constraint on two variables

x in , x out (or x 1 , x 2 , respectively) representing the in- and out-port of the dependency (or the two in-out-ports, respectively). 

Technically, a parametric flow dependency is again a path dependency, which enforces that whenever x in takes a partic-

ular value, that x out takes a value determined by the parametric constraint. The flow is always from the in-port to the out-

port. It is bi-directional only in case of in-out-ports. Parametric flow dependencies may e.g. be used to specify time delays. 

Same as for the structural dependencies all flow dependencies and parametric constraints can be captured by invariants

in Event-B. 

5. A behavioral conceptual model for hybrid systems 

For the semantics of the structural part we exploit Event-B, more precisely multiple Event-B machines with a single

context. The context captures the data type definitions from the structural model as explained in Section 3 . As each data

type defines a set of values, the context specifies these sets explicitly. 

5.1. Multiple concurrent Event-B machines 

Event-B machines define variables, invariants and events [1] . In a nutshell an Event-B machine comprises a finite set

V of state variables , an invariant I and a finite set E of events . One of the events is an initialization event init . We may

assume a universe U of values and several pre-defined domains D i ⊆ U such as domains of integers, Booleans, real numbers,

character strings, etc. For all these domains we may further assume pre-defined operations such as addition, multiplication,

concatenation, etc. 

An Event-B machine is bound to a context , in which further sets and further operations on them can be defined. For

these the usual constructors for sets such as comprehension, products, unions, etc. as well as λ-abstraction to define

functions can be exploited. Using constants, operations and predicates provided by the context, the state variables (treated

as constants) plus other variables we may define terms and first-order formulae in the usual way. The invariant I must be

a closed formula defined in this way. 

A state is defined by assigning a value in U to each state variable x ∈ V . We write val S ( x ) for the value assigned to x in

state S . We may interpret terms and formulae in a state S and extend the evaluation function val in this way. If t is a term,

say t = f (t 1 , . . . , t n ) , then val S ( f (t 1 , . . . , t n )) = f ( val S (t 1 ) , . . . , val S (t n )) . Note that f on the write-hand-side of this equation

denotes the pre-defined operation f . Clearly, the evaluation of a term that is a state variable x is given by its value in the

state. If x is an arbitrary variable, not a state variable, then its interpretation requires a variable assignment , i.e. a function σ
from the set of such variables to U , and we have val S (x ) = σ (x ) . 

Atomic formulae are interpreted in the same way resulting in a truth value true or false . This is then extended in

the usual way for negation, conjunction, disjunction, implication and quantified formulae. In particular, as I is a closed

formulae, val S (I) denotes a truth value. As usual, we write S |� I iff val S (I) = true holds, in which case we say that I is

satisfied in state S . A state S is a valid state iff I is satisfied in S . 

Each event e ∈ E takes the form 

ANY y 1 , . . . , y n WHEN ϕ THEN x 1 := t 1 ‖ . . . ‖ x m 

:= t m 

, 
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i.e. it is an unbounded choice with a parallel assignment. Here y 1 , . . . , y n are arbitrary variables, ϕ is a formula that contains

at most y 1 , . . . , y n as free variables, x 1 , . . . , x m 

are the state variables, and t 1 , . . . , t m 

are terms that may use the variables

y 1 , . . . , y n . 

An event e is enabled in state S iff for some assignment of values to the variables y 1 , . . . , y n the guard ϕ holds 3 . An

enabled event may fire 4 , which results in a successor state S ′ of S . Informally, choose a variable assignment σ such that ϕ is

satisfied in S using this variable assignment, then determine v i = val S (t i ) using σ for the interpretation of the free variables

y 1 , . . . , y n and let val S ′ (x i ) = v i . 
Then a run of the machine 5 is a sequence S 0 , S 1 , S 2 , . . . of valid states such that S 0 is an initial state and for each i the

state S i +1 is a successor state of S i resulting from firing events that is enabled in S i . Note that this definition of run is highly

non-deterministic, as the unbounded choice allows us to select values for the variables y 1 , . . . , y n , which determine the new

values that are assigned to the state variables. 

In Sections 3 and 4 we explained how we obtain variables and invariants from the structural conceptual model.

However, we cannot simply take all these variables and invariants into a single Event-B machine and complement them by

the definition of events: 

• For the definition of the semantics of Event-B it is assumed that when conditions of several events are simultaneously

satisfied, the events are executed in parallel in a synchronous way. As already explained in the introduction, the proof of

Gurevich’s behavioral theory of sequential algorithms [27] implies that any sequential algorithm can be captured step-by-

step by an equivalent Event-B machine. That is, while bounded synchronous parallelism is well captured, hybrid systems

with multiple components require several events to be fired concurrently in an asynchronous way. For this we have to

exploit multiple Event-B machines, for which an appropriate semantics has to be defined 

6 . 
• When multiple machines are introduced adopting the semantics of concurrency as developed in the context of ASMs [18] ,

the interaction of the various machines will require shared memory locations, which are also uncommon for Event-B. 

For the extension of Event-B to a concurrent multiple machine model we exploit that if S 0 , S 1 , S 2 , . . . is a run of an

Event-B machine with state variables V = { x 1 , . . . , x m 

} , then we obtain differences between a state S i and its successor S i +1 .

For this let Diffi = { x ∈ V | val S i (x ) � = val S i +1 
(x ) } be the set of state variables, on which the state S i and its successor S i +1

differ. Then define the difference set (or update set 
i = { (x, val S i +1 
(x )) | x ∈ Diffi } . This is called update set, because the

change from S i to S i +1 updates exactly the state variables in Diffi to their new value given in 
i . Correspondingly, each

element of 
i , i.e. a pair comprising a state variable and a value, is called an update . 

If 
 is an arbitrary set of updates on a state S , then S + 
 denotes the state resulting from S by applying the update set

to it. For each state variable x we have 

val S+
(x ) = 

{
v if (x, v ) ∈ 
 and 
 is consistent 
val S (x ) otherwise 

. 

An update set is called consistent iff for all x ∈ V and all v 1 , v 2 ∈ U with ( x, v 1 ) ∈ 
 and ( x, v 2 ) ∈ 
 we have v 1 = v 2 . Note

that the update set defined by the difference of two states in a run is always consistent, and we have S i +1 = S i + 
i . 

Phrased differently, each run of an Event-B machine results from building update sets and applying them. For a rule of

an event e the possible update sets in state S take the form {( x i , val S ( t i )}. As the values resulting from the interpretation of

the terms t i depend on the variable assignment for the variable y i and further the event be must be enabled, we define 

�i = {{ (x j , val S i (t j ) } | S i |� ϕ(y 1 , . . . , y n ) ∧ grd (e ) } . 
�i is the set of possible update sets of the Event-B machine in state S i . Thus in a run S 0 , S 1 , S 2 , . . . we always have

S i +1 = S i + 
 for some 
∈ �i . 

This allows us to proceed from single Event-B machines to multiple machines. For this take a finite family {M i | i ∈ I} of

Event-B machines M i (for convenience we use some finite index set I here). For the semantics the key idea is to separate

the building of update sets from their application, by means of which we take care of the different pace, with which the

autonomous machines M i operate. This reflects the essential property of asynchronously collaborating machines of having

each its own clock according to which they make steps. 

Let V = 

⋃ 

i ∈ I V i be the union of the sets of state variables of the machines M i . A state S defined over V is called global ,

whereas the restricted states res i ( S ) built over V i are called local for M i . While res i ( S ) is valid iff it satisfies the local

invariant I i associated with the machine M i , a global state S is valid iff S |� ∧ 

i ∈ I I i holds. 

Then, in analogy to the definition in [18] we define a concurrent system of Event-B machines as an I -indexed family

M = {M i } i ∈ I of Event-B machines M i such that some variables are shared between several machines. The semantics is

defined by concurrent runs. 
3 Note that this reflects the reactive behavior of events in Event-B. The guard is observed, and only when it becomes satisfied, the parallel assignment 

come into action. 
4 Note that in Event-B only one event that is enabled in a state is selected for firing. 
5 Note that runs are an immediate consequence of the state transitions defined by the events. There are usually not emphasized in the Event-B literature, 

as invariance and refinement proofs only require single events to be considered. However, for the concurrent extension below runs will become more 

important. 
6 Let us emphasize here again that this is indeed an extension to Event-B. 
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Definition 5.1. Let M = {M i } i ∈ I be a concurrent system of Event-B machines. A concurrent run of {M i | i ∈ I} is a sequence

S 0 , S 1 , S 2 , . . . of valid global states, in which S i +1 is a successor state of S i . 

For this definition it remains to clarify the notion of successor state of a global state. For this consider first finite subsets

I i ⊆ I of indices of those machines that initiate a step in S i . For each j ∈ I i we obtain a set �i, j of possible update sets of M i 

in the local state res j ( S i ) arising by restriction from the global state S i . 

For the transition from the global state S i to a successor S i +1 we take another finite subset ˆ I i ⊆ I of indices of those

machines that finish their step in S i +1 . Then for each j ∈ ̂

 I i there exists an index k ( j ) ≤ i such that the step of M j was

initiated in state S k ( j ) . So we obtain an update set 
i = 

⋃ 

j∈ ̂ I i 
k ( j) , j selecting update sets 
k ( j ), j ∈ �k ( j ), j , with which we can

define the successor state S i +1 = S i + 
i . 

Informally phrased, in a concurrent run the sequence of global states results from simultaneously applying update sets

of several individual machines that have been built on previous (not necessarily the last nor the same) states. Note that the

definition leaves it completely open, how big the difference between i and k ( j ) is, which reflects that a machine may operate

slowly or fast, but is completely oblivious to the activities of the other machines in the concurrent family. This adds another

source of non-determinism; even if the individual machines operate deterministically, the multi-machine family will not. 

Further note that the asynchronous parallel behavior of the machines M i in the family as expressed by the definition of

concurrent runs does not rely on interleaving, but permits simultaneous updates by several machines. It is not a weakness

but a strength of state-based methods that any mimicking of collaboration in parallel 7 by means of interleaving can be

dispensed with. 

Thus, we will capture the behavior of a hybrid by a concurrent system of Event-B machines subject to this definition

of concurrent runs. Each of the machines involved in this collection will comprise some of the variables determined by

the structural conceptual model and the invariants associated with these variables as determined by the constraints in the

structural conceptual model. A variable is pliant, if its type involves the continuous function type constructor; otherwise it

is mode. All variables and constraints as derived in the previous sections will have to be captured in at least one machine

M i ; variables that appear in more than one machine are shared. 

While the variables of the machines are linked to the attributes of the components in the structural model, these two

notions have to separated carefully. As machines interact asynchronously, whereas flow dependencies enforce synchronous 

behavior, the variables associated with each Event-B machine M i in a concurrent system correspond to a view. 

Definition 5.2. A view schema S v is another schema that results from S by omitting block types or clusters B i , omitting

components or attributes of a block type B i , and replacing any attribute A j of a block type B i by a subattribute. 

5.2. Separation of concerns 

The structural conceptual model that we developed in Section 3 emphasizes the decomposition of a hybrid system

into components, for which we introduced block types. These block types are associated each with an order n ≥ 0. The

behavior of elementary block types of order 0 can only be either continuous or discrete, but not hybrid. Otherwise further

structuring into components should be possible. This reflects the fact that in reality continuous behavior is associated with

a piece of hardware in a general sense subsuming electrical, mechanical and hydraulic parts, whereas discrete behavior is

associated with a piece of software. We therefore claim that in a sufficiently refined model continuous and discrete aspects

must be separated on the level of elementary block types. 

Consequently, there is a need for Event-B machines that capture the behavior of continuous components. Flow depen-

dencies (or parametric flow dependencies) guarantee that the manipulation of control variables can be done by discrete

Event-B machines, while the (parametric) flow dependency itself is assured by an assertion. 

Definition 5.3. An assertion is a statement that a flow dependency or parametric flow dependency is always satisfied. 

Such an assertion can be grounded in a general law of physics or it can be confirmed by experiments with the

continuous component associated with the flow. Alternatively, it is possible to define a distinguished Event-B machine that

maintains the flow dependency. In this case, whenever the in-port (or one of the in-out-ports) of the flow dependency is

updated, an update to the out-port (or the other in-out-port) is triggered enforcing the flow dependency to be satisfied. 

6. The hemodialysis machine case study 

In this section we apply our conceptual model to the hemodialysis machine case study described in [35] . This will

illustrate the key modeling ideas, though the model itself will necessarily remain incomplete. 

A hemodialysis machine (as illustrated schematically in Fig. 6.1 ) is used as an artificial filtration system that extra-

corporally purifies the blood by removing impurities and unwanted fluids. A typical hemodialysis procedure is performed

in the following fashion: 
7 In fact, interleaving expresses parallelism by sequentialization, which is not exactly what happens in reality. For systems with a sequential 

implementation—this includes all those built at the time the notion of interleaving was invented—this may be acceptable, for truly asynchronous systems—

this includes all distributed systems with multiple processors spread over a network—this workaround is not needed, but in contrast counter-productive. 
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Fig. 6.1. Schematic view of a hemodialysis machine [35] . 

 

 

 

 

 

 

 

 

 

 

 

 

1. Two needles are inserted into a patient’s arm, one to take out the blood and the other to put the blood back. A specific

amount of blood (approximately five percent of the patient’s blood) is taken outside the body at a given time. 

2. The blood is taken through the arterial access of the patient’s arm. The blood then travels through a thin tube that

takes the blood to the dialyzer. A dialyzer is comprised of many fine hollow fibers which are made of a semi-permeable

membrane. 

3. As the blood flows through these fibers, the dialysate (a chemical substance) flows around them, removing impurities

and excess water and adjusting the chemical balance of the blood. 

4. After being cleansed and treated, the blood is returned to the patient’s arm through the venous access. 

6.1. Component model of a hemodialysis machine 

We first describe a schema comprising the components of a hemodialysis machine. We have to omit some details to keep

the illustration of the conceptual model reasonably compact. Furthermore, the model will already be rather refined, as we do

not emphasize the development process. The schema is depicted by the combination of the four subdiagrams in Figs. 6.2 –6.5 .

As shown in Fig. 6.2 a hemodialysis machine comprises four components: the extracorporal blood circuit ( EBC ), the

dialyser component ( Dialyser ), the dialyser fluid subsystem ( DF_Subsystem ), and the control unit ( Control_Subsystem ). So

the definition of the block type HD_Machine (following Definition 3.3 ) takes the form 

({ control : Control_Subsystem , dialyser : Dialyser , 

ebc : EBC , df : DF_Subsystem } , ∅ ) . (6.1)

Note that for all four components we have participation cardinality constraints with value 1, i.e. each dialyser or control

component belongs to exactly one hemodialysis machine. 

The component Control_Subsystem is defined by an elementary block type (see Definition 3.3 ) of order 0 with

attributes shown in Fig. 6.2 . That is we have 

(∅ , { arterial _ pressure , venous _ pres sure , arterial _ entry _ pressure , 
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Fig. 6.2. Components of the hemodialysis machine (subdiagram). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transmembrane _ pressure , heparin , open? , red? , air? , df _ temperature } ) . (6.2) 

The first four attributes all have the type (following Definition 3.1 ) P r essur e = REAL → REAL capturing that pressure

depends on time. The attribute heparin has the type V olume = REAL → REAL capturing that also the heparin volume

can be manipulated over time. Fpr the attributes open?, red? and air? only two values are permitted, so the type is

YesNo = ( yes : 1 ) � ( no : 1 ) in all three cases. The attribute df_temperature capturing the desired temperature of the

dialyser fluid has the type T emperature = REAL → REAL . This will enable to control the temperature over time. 

There are many additional attributes associated with the control unit such as all the rinsing parameters, dialyser fluid

parameters and UF parameters defined in [35] that are set by the user and are used in the monitoring of HD machine. We

omit a more detailed discussion of these parameters here. 

The extracorporal blood circuit is a very important component. As illustrated in Fig. 6.3 the block type EBC of order

1 has six components, the elementary block types Arterial_Chamber , Venous_Chamber , Arterial_Pump , Heparin_Pump ,

Safety_Detector and Venous_Valve . Thus, the definition of the block type EBC (see Definition 3.3 ) takes the form 

({ ac : Arterial_Chamber , vc : Venous_Chamber , pp : Arterial_Pump , 

sp : Heparin_Pump , safety : Safety_Detector , valve : Venous_Valve } , ∅ ) . (6.3) 

The arterial pump pumps the patient’s blood into the arterial chamber, from where it flows into the dialyser for cleaning.

In addition, the heparin pump pumps heparin into the blood to prevent coagulation. Cleaned blood flows from the dialyser

into the venous chamber, from where it is returned to the patient’s body. This return flow is monitored by the safety

detector, which detects both blood and air. In the latter case the venous valve will be blocked. 

The most important attributes of Arterial_Chamber are inflow, outflow and heparin, all of type Volume , and ar-

terial_pressure of type Pressure . Likewise, Venous_Chamber has the attributes inflow and outflow of type Volume ,

and venous_pressure of type Pressure . The attributes of Arterial_Pump are inflow and outflow of type Volume , and

arterial_entry_pressure of type Pressure , and Heparin_Pump has the attribute heparin of type Volume . Attributes of

Safety_Detector are inblood and outblood of type Volume and air? and red? of type YesNo . Analogously, Venous_Valve has

attributes inblood and outblood of type Volume and open? of type YesNo . 
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Fig. 6.3. Subdiagram for the extra corporal blood circuit. 

Fig. 6.4. Subdiagram for the dialyser component. 

Fig. 6.5. Subdiagram for the dialyser fluid subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure of the dialyser component is illustrated in Fig. 6.4 . A dialyser has a cylindric shape and is made of a

semipermeable membrane configured as hollow fibers that separates blood from dialysate. It comprises the most important

balance chamber and another pump for the ultra-filtrate. The balance chamber contains two chambers (one for blood and

one for dialysate) allows each to be filled from one side while an identical volume is emptied to the other side. The total

outlet fluid volume is always equal to the total input fluid volume. Each membrane has a magnetic sensor for monitoring

purposes. Thus, the the definition of the block type Dialyser takes the form 

({ bc : Balance_Chamber , ufp : UF_Pump } , ∅ ) . (6.4)

Balance_Chamber is an elementary component with attributes inblood, outblood, df and used_df&uf of type Volume ,

bypass? of type YesNo , and transmembrane_pressure of type Pressure . UF_Pump is another elementary component with

attributes inflow and outflow, both of type Volume . 

The dialyzing fluid (DF) preparation component is responsible for concentrate preparation that consists of mixing the

heated and degassed water with bicarbonate concentrate and acid concentrate. The accuracy of the DF concentration is

controlled by the conductivity sensors. The DF water preparation component is responsible for degassing and heating the

purified water, coming from the reverse osmosis system, to a predetermined temperature. The temperature is set by the

user (usually 37 °C), before the concentrate is prepared. The degassing chamber and the heater assembly are integral part

of the system. Fig. 6.5 illustrates the subschema for the dialyser fluid subsystem, where the block type DF_Subsystem is

defined as 

({ wp : Water_Preparation , dfp : DF_Preparation } , ∅ ) . (6.5)
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The elementary block type Water_Preparation has attributes water and df_water of type Volume and df_temperature of

type Temperature . Attributes of the elemenary block type are df_water and df of type Volume , and df_flow, bicarbonate, acid

and acetate of type REAL . 

Note that all the definitions of block types above define a well-defined schema in the sense of Definition 3.4 with a

diagram illustrated by Figs. 6.2 –6.5 . As the schema described and illustrated above is already rather refined, the principle

of separation of concerns is already fulfilled, i.e. Control_Subsystem is a discrete component, whereas all other elementary

components are continuous. 

6.2. Flow dependencies 

Among the elementary components in the structural conceptual model above we have several flow dependencies. We

denote these flow dependencies in the format in → out or in-out ↔ in-out , respectively. The former format identifies in

in-port on the left-hand-side and an out-port on the right-hand-side, while the latter one identifies in-out-ports on both

sides. In our model we basically have three types of flow dependencies: 

1. A dependency may indicate a physical flow between two continuous components involving pliant attributes, usually with

data types such as Volume or Pressure . 

2. A dependency may indicate a flow of a measured sensor value from a continuous component to a discrete one. 

3. A dependency may indicate a flow of an actuator value from a discrete component to a continuous one. 

The first type of flow dependencies occurs with the blood flow, the flow of the dialysing fluid and the flow of the

ultra-filtrate. Thus we have (following Definition 4.7 ) 

Arterial_Pump . outflow → Arterial_Chamber . inflow 

Heparin_Pump . heparin → Arterial_Chamber . heparin 

Arterial_Chamber . outflow → Balance_Chamber . inblood 

Water_Preparation . df _ water → DF_Preparation . df _ water 

DF_Preparation . df → Balance_Chamber . df 

Balance_Chamber . used _ df & uf → UF_Pump . inflow 

Balance_Chamber . outblood → Venous_Chamber . inflow 

Venous_Chamber . outflow → Safety_Detector . inblood 

Safety_Detector . outblood → Venous_Valve . inblood (6.6) 

In all these cases the flow dependency corresponds to a simple tube connection, so we can make assertions for all of

them. We might argue that the dependencies are not simple equalities, the default for flow dependencies, but that there is

a small time delay instead. We neglect these subtleties for now. We also neglect the possibility of broken tubes, for which

additional sensors would be required measuring the pressure at the in- and out-ports, respectively, such that a control

component could indicate an alarm in case the flow dependency is violated. 

The most important sensor values in the extra-coporal blood circuit are the incoming blood flow and the arterial

pressure associated with the arterial pump, the heparin volume associated with the heparin pump, the arterial and venous

pressure in the respective chambers, and the signals air? and red? associated with the safety detector. These give rise to

the following flow dependencies: 

Arterial_Pump . inflow ↔ Control_Subsystem . filling _ bp _ volume 

Arterial_Pump . arterial _ entry _ pressure → 

Control_Subsystem . arterial _ entry _ pressure 

Heparin_Pump . heparin ↔ Control_Subsystem . heparin 

Arterial_Chamber . arterial _ pressure → Control_Subsystem . arterial _ pressure 

Venous_Chamber . venous _ pressure → Control_Subsystem . venous _ pressure 

Safety_Detector . air? → Control_Subsystem . air? 

Safety_Detector . red? → Control_Subsystem . red? (6.7) 

Like the first of these dependencies there are more flow dependencies associated with rinsing, dialysing fluid and ultra-

filtrate control parameters that we omitted in the model. These can be subject to further refinements. Also not that some

of these flow dependencies use in-out ports, so they are bi-directional to ensure that there is also an associated actuator. 

Similarly, transmembrane_pressure associated with the balance chamber, and df, df_water, df_temperature associated 

with the dialysis fluid subsystem represent important sensor data that are to flow to the control subsystem. This defines

the following flow dependencies: 

Balance_Chamber . transmembrane _ pressure → 
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Control_Subsystem . transmembrane _ pressure 

DF_Preparation . df → Control_Subsystem . df 

DF_Preparation . df _ water → Control_Subsystem . df _ water 

Water_Preparation . df _ temperature ↔ Control_Subsystem . df _ temperature (6.8)

Finally, we have the following flow dependencies that are associated with actuators (not yet covered by the cases

above): 

Control_Subsystem . open? → Venous_Valve . open? 

Control_Subsystem . bypass? → Balance_Chamber . bypass? 

Control_Subsystem . df _ flow → DF_Preparation . df _ flow (6.9)

All these flow dependencies correspond to a simple cabling connections between sensors, actuators and the control unit,

so we can make assertions for all of them. 

6.3. Parametric constraints 

For the proper functioning of the machine several parametric constraints (as Definition 4.8 ) must be satisfied. The

following list contains a small selection of such constraints: 

• When running the EBC with a 8/12 mm pump segment, the machine shall be able to perform a blood flow in the range

of 30...600 ml/min with a tolerance of 10% (arterial pressure = −200 to +400 mmHg) and of 25% (arterial pressure =
−300 to −200 mmHg). That is, we require 

D t F (t) = f blood (t) ⇒ 0 . 9 b f ≤ 60(F (b) − F (a )) 

b − a 
≤ 1 . 1 b f , (6.10)

where a ≤ b are any points in time, f blood is one of the functions associated with Arterial_Pump .inflow or Arte-

rial_Pump .outflow, and bf is the value in [30,600] set for the blood flow. 
• During the therapy, if the blood pump is running and if the venous pressure in the venous chamber is lower than a

lower alarm limit minus 10 mmHg (VPAbsoluteMin - 10 mmHg) for more than 5 s, then the control system shall stop

the blood pump and execute an alarm signal. This requirement can be formalized as follows: 

∀ a, b.b − a ≥ 5 ⇒ ∃ t.a ≤ t ≤ b ∧ v p (t) > min _ pressure − 10 , (6.11)

where vp ( t ) is the function associated with Venous_Chamber .venous_pressure. 
• The common dependency between volume and pressure defines a parametric constraint between arterial_pressure and

inflow on Arterial_Chamber : 

D t ap (t) = 

− const 

in f low (t) 2 
D t in f low (t) (6.12)

using functions ap ( t ) and inflow ( t ) associated with Arterial_Chamber . arterial_pressure and Arterial_Chamber .inflow,

respectively. 
• During the therapy, the control system shall monitor the blood flow in the EBC and if no flow is detected for more

than 120 seconds, then the control system shall stop the blood pump and execute an alarm signal. This involves the

parametric constraint 

D t F (t) = f blood (t) ⇒ (b − a ≥ 120 ⇒ F (b) − F (a ) > 0) (6.13)

using again arbitrary time points a ≤ b are any points in time and the function f blood associated with Arte-

rial_Pump .inflow. 
• The liquids flowing in and out of the balance chamber of the dialyser must have the same volume, i.e. 

∀ t . inblood (t ) + df (t) = outblood (t) + used _ df & uf (t) (6.14)

using the functions associated with the attributes Balance_Chamber .inblood, Balance_Chamber .outblood, Bal-

ance_Chamber .df and Balance_Chamber .used_df&uf. 

Other dependencies as listed in [35] can be formalized analogously. 

6.4. Event-B machines 

In order to define the behavior of the hemodialysis machine we define several asynchronously operating Event-B

machines. Accordingly, we will turn the block type Control_Subsystem into a block type of order 1 such that each Event-B

machines will be associated with a unique elementary block type that appears as a component of Control_Subsystem . In

addition, as discussed in Section 5 each Event-B machines is associated with a view on the schema. 
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Machine M safety _ air 

There must exist a machine, name it M safety _ air , that is responsible for the safety of the patient in case air is detected in

the venous blood stream. So, first define a new block type Safety_Air_Controller that inherits only the attributes air? and

open? from Control_Subsystem . The simple function of an associated Event-B machine is to close the venous valve, i.e.

set open? to “no”, in case air is detected, i.e. the value of air? is “yes”. Then the view V safety _ air is defined by the following

subschema: 

HD_Machine = ({ control : Control_Subsystem , ebc : EBC } , ∅ ) 
Control_Subsystem = ({ safety : Safety_Air_Controller } , ∅ ) 
Safety_Air_Controller = (∅ , { air? , open? } ) 
EBC = ({ safety : Safety_Detector , valve : Venous_Valve } , ∅ ) 
Safety_Detector = (∅ , { air? } ) 
Venous_Valve = (∅ , { outblood , open? } ) 

We fix an identifier i hd ∈ ID and define three variables for the Event-B machine M safety _ air as follows: 

var _ air = HD_Machine (i hd )! control ! safety . air? 

var _ open = HD_Machine (i hd )! control ! safety . open? 

var _ out = HD_Machine (i hd )! ebc ! valve . air? 

Due to the assertion for flow dependencies we also have the equalities 

var _ air = HD_Machine (i hd )! ebc ! safety . air? 

var _ open = HD_Machine (i hd )! ebc ! valve . open? 

The associated types of these attributes in the structural conceptual model defines the following three invariants: 

var _ air ∈ YesNo , var _ open ∈ YesNo , var _ out ∈ V olume 

Note that due to these typing invariants the variables var_air and var_open are mode, while var_out is pliant. 

The most important event in the machine M safety _ air is close_valve , which is activated, when air is detected in the blood,

and results in closing the venous valve. Accordingly, the out-streaming blood volume will become 0. This event is specified

as follows: 

Event close_valve 

WHEN var_air = yes 

THEN var_open : = no var_out : = I f . f (t) = 0 

Machine M control _ bp 

Another machine is M control _ bp , which is used for controlling the arterial blood pump. As before we define another

component Control_BP of Control_Subsystem , and the view V control _ bp is defined by the following subschema: 

HD_Machine = ({ control : Control_Subsystem , ebc : EBC } , ∅ ) 
Control_Subsystem = ({ bp : Control_BP } , ∅ ) 
Control_BP = (∅ , { arterial _ entry _ pressure , ap _ limit , bp _ speed } ) 
EBC = ({ pp : Arterial_Pump } , ∅ ) 
Arterial_Pump = (∅ , { inflow , outflow , arterial _ entry _ pressure } ) 

Using the same identifier i hd ∈ ID we define three variables for the Event-B machine M control _ bp as follows: 

var _ in = HD_Machine (i hd )! ebc ! pp . inflow 

var _ pressure = HD_Machine (i hd )! ebc ! pp . arterial _ entry _ pressure 

var _ out = HD_Machine (i hd )! ebc ! pp . outflow 

bp _ speed = HD_Machine (i hd )! control ! bp . bp _ speed 

ap _ limit = HD_Machine (i hd )! control ! bp . ap _ limit 

The associated types of these attributes in the structural conceptual model defines the following three invariants: 

var _ in ∈ V olume , var _ pressure ∈ P r essur e , var _ out ∈ V olume 

In addition, we require several local variables in the events: 

• activate _ bp and bp _ status , both of type OnO f f = ( on : 1 ) � ( off : 1 ) are used as status variable for the activation of the

pump and the status of the arterial blood pump, which may be on or off. 
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• accelerate _ bp ∈ Accelerate = ( on : 1 ) � ( accelerating : 1 ) � ( off : 1 ) is used as status variable for the acceleration of the

arterial blood pump, which may be on, off or accelerating. 
• bp _ timing and ap _ timing , both of type REAL → REAL are linear, monotonically decreasing functions that are used for

monitoring a set time interval. At the start of the interval the value of the function is the time to elapse, at the end the

value is 0, i.e. when the value 0 is reached, the set time has elapsed. The two variables are used for the timing intervals

for the blood pump activation and the pressure adjustment. 

The following events are associated with the control of the arterial pressure, which is monitored by an automatically set

limits window. The limits window is set 10 s after the last activation of the arterial pump. Thus we first require an event

to activate the arterial pump: 

Event activate_blood_pump 

WHEN activate_bp = on 

THEN bp_status : = on 

bp_timing : = max (0 , I f . D t f (t) = −1 ∧ f ( now = 10) 

The width and thresholds of the limits window are set by the control unit of the hemodialysis machine. The lower limit

value is automatically adjusted during treatment. This means that the distance between the lower limit and the actual pres-

sure decreases. This compensates for the hematocrit increase generally caused by the added ultra-filtrate. The adjustment

is carried out every 5 minutes and adds up to 2.5 mmHg at a time. So we need an event to adjust the pressure limit: 

Event adjust_pressure_limit 

WHEN bp_status = on ∧ ap_timing( now ) = 0 

THEN ap_limit : = ap_limit + 2.5 

ap_timing : = max (0 , I f . D t f (t) = −1 ∧ f ( now ) = 300) 

The minimum distance of 22.5 mmHg is always maintained. The lower pressure limit during hemodialysis is checked.

An optimal interval is approximately 35 mmHg between the lower pressure limit and the current value. By changing the

speed of the arterial blood pump for a brief period, it is possible to reposition the limits window. So we define events for

increasing the pressure and accelerating the blood pump: 

Event increase_pressure 

WHEN var_pressure( now ) - ap_limit ≤ 22.5 

THEN accelerate_bp : = on 

Event accelerate_blood_pump 

WHEN bp_status = on ∧ accelerate_bp = on 

THEN bp_speed : = bp_speed + const 1 
accelerate_bp : = accelerating 

var_in : = I f . f (t) = var _ in (t) + const 2 

var_pressure : = I f . D t f (t) = 

− const 

var _ out (t) 2 
D t var _ out (t) ∧ 

f ( now ) = var _ pressure ( now )) 

Furthermore, the request that the blood pump is only accelerated for a brief period of time has to be taken care of by

another event 

Event stop_accelerating_blood_pump 

WHEN accelerate_bp = accelerating ∧ 

var_pressure( now ) - ap_limit ≥ 35 

THEN bp_speed : = bp_speed - const 1 
accelerate_bp : = off

Other machines 

The two machines above are examples for the capture of behavior in our model with direct link to Event-B. The

important aspect is that these machines must run asynchronously. The are other machines, which we do not specify in

this article. Clearly, the control subsystem must control the preparation of the dialyser fluid, which could be handled by

a machine M control _ df . Furthermore, there are many safety alerts—actually, the vast majority of events in a hemodialysis

machine is associated with safety monitoring (see the list of requirements in [35] )—and all these safety alerts must be

handled asynchronously. Here we dispense with the detailed development of corresponding Event-B machines. 

7. Conclusion 

In this article we developed a conceptual model for hybrid dynamic systems and exemplified its usage on the hemodial-

ysis machine case study [35] . The conceptual model comprises a structural and a behavioral part. The former one is

grounded in HERM [48] and emphasizes part-of-relationships among components and descriptive attributes associated

with complex data types, in particular capturing continuous functions. Furthermore, complex structural constraints define

conditions that must be satisfied in all states. Flow dependencies and parametric constraints allow us to capture continuous

behavior by integrating differential equations. 
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The behavioral part in grounded in hybrid Event-B [9,10] and emphasizes multiple asynchronous machines with a

common context and shared variables. It obeys restrictions arising from flow dependencies in the structural part which

imply synchronized behavior. Therefore, individual machines with a synchronous behavior are associated with views on

the structural model, which provides guidelines how to use the modeling language. Elementary components that are not

further structured must not be hybrid; they can either by purely discrete or purely continuous. This separation principle

defines another guideline. 

The conceptual model has previously been investigated in the context of concurrent ASMs [18,21] and the landing gear

case study [17] . Some of the ideas in the conceptual model that suggest extensions to Event-B are inspired by this research

in the context of a related rigorous method. 

The conceptual model encourages a systematic development method for hybrid systems, which first emphasizes the

modeling aspect, i.e. the capture of components, their relationships and static and behavioral (parametric) constraints. This

prevents developers from jumping too quickly into formalizing or even implementing tiny aspects of the behavior with the

known danger to get lost in complexity for the overall development task. Looking into the various approaches addressing

the hemodialysis case study [4,5,7,25,26,28,29] or the landing gear case study [6,8,30,34,45,47] this danger is real. 

Furthermore, the conceptual model enforces the separation of concerns between continuous and discrete concepts.

The latter ones lead to well-defined Event-B machines that are linked by views to the structural conceptual model as

emphasized in this article. Concerning the continuous components the model enables to link them to descriptions in CAD

systems and further to their production processes in CAM systems. In this way the behavior specification in the conceptual

model will also be complemented for the physical components. 

Event-B supports rigorous refinement, which has not yet been with in this article. The development of a refinement-

based development method is left for future work. However, the perspective arising from the use of refinement is that our

model does not only provide a method for high-level modeling with formal semantics, it also supports targeted systems

development. Concerning the continuous extensions it may be necessary to integrate retrenchment [11] , which is a partic-

ular form of refinement that takes care of the dependence on time in the continuous part of the specification. However,

how retrenchment will enter the model is an open issue. Concerning asynchronous behavior, the notion of refinement has

to be generalized to multiple Event-B machines. This defines the next steps of the research towards full support for hybrid

systems engineering. 
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